ارزیابی مقاومت شیارشگذی مخلوطهای آسفالتی با استخوانبندی سنگدانهای حاوی افزودنی‌های خرده لاستیک و شیشه

احمد منصوریان، استادیار، پژوهشکده حمل و نقل، دانشگاه علم و صنعت ایران، تهران
مصوب مولا محمدکریمی، کارشناس ارشد راه و ترابری

E-mail: a_mansourian@iust.ac.ir

دریافت: 92/11/15

چکیده

انباشت روزافزون مواد زائد حاصل از تولیدات کارخانجات صنعتی و زندگی روزمره به یکی از اعضلات اساسی در شهرهای بزرگ تبدیل شده است. از جمله راه‌هایی که برای این مشکل انتشادگی شده است، استفاده از این مواد در سیرﮐارخانه‌های راه‌آهن می‌باشد. با توجه به اینکه تاکیدهای مستقل و شیشه‌های ضایعاتی از جمله مواد حاصل خشک‌کردن که حجم قابل ملاحظه‌ای از مواد زائد را به خود اختصاص می‌دهند، در این تحقیق اثر افزودنی‌های خرده لاستیک و شیشه بر روی مقاومت شیارشگذی مخلوطهای آسفالتی با استخوانبندی سنگدانهای در محیط‌های نور مدار سایر ساختنی و قرار گرفته است. برای این منظور از مصالح سنگی با دانه‌های بزرگ، فرز خالص 70 و 90 در دو نوع بوش‌زندگی (خرده لاستیک و خرده شیشه) با درصد‌های مختلف استفاده شده است. نتایج حاصل از آزمایشات شیار استخوانبندی سنگدانهای تنش می‌دهد مواد افزودنی مذكور باعث افزایش مقاومت مخلوطهای آسفالتی با استخوانبندی سنگدانهای در برابر شیار افزایدگی چای جرخ می‌شوند.

واژه‌های کلیدی: آسفالت‌ها، استخوان‌بندی سنگدانهای، شیشه، لاستیک، شیار افزایگی، جای خرده، خرید دیامیک

1. مقدمه

انباشت روزافزون مواد زائد حاصل از تولیدات کارخانجات صنعتی و زندگی روزمره به یکی از‌عضلات اساسی در شهرهای بزرگ تبدیل شده است. از جمله راه‌هایی که برای این مشکل انتشادگی شده است، استفاده از این مواد در سیرکارخانه‌های راه‌آهن می‌باشد. با توجه به اینکه تاکیدهای مستقل و شیشه‌های ضایعاتی از جمله مواد حاصل خشک‌کردن که حجم قابل ملاحظه‌ای از مواد زائد را به خود اختصاص می‌دهند، در این تحقیق اثر افزودنی‌های خرده لاستیک و شیشه بر روی مقاومت شیارشگذی مخلوطهای آسفالتی با استخوانبندی سنگدانهای در محیط‌های نور مدار سایر ساختنی و قرار گرفته است. برای این منظور از مصالح سنگی با دانه‌های بزرگ، فرز خالص 70 و 90 در دو نوع بوش‌زندگی (خرده لاستیک و خرده شیشه) با درصد‌های مختلف استفاده شده است. نتایج حاصل از آزمایشات شیار استخوانبندی سنگدانهای تنش می‌دهد مواد افزودنی مذكور باعث افزایش مقاومت مخلوطهای آسفالتی با استخوانبندی سنگدانهای در برابر شیار افزایگی چای جرخ می‌شوند.

کهنه و فرسوده وسایل تقلیل نيز از جمله مشکلات زيست محیطی بسیاری از کشورها محصول می‌شود. به علائم مثال سرگاه‌های مستعمل در ایالات متحده براک کرده یک جدول است (NCHRP 2013). از این تعداد تا نیم میشود و 250 میلیون حلقه برای تولید مجدد تاکیدهای نو استفاده می‌شود. با توجه به قیمت‌گذاری توسط این سایر استخوانبندی سنگدانهای در محیط‌های نور مدار سایر ساختنی و قرار گرفته است. برای این منظور از مصالح سنگی با دانه‌های بزرگ، فرز خالص 70 و 90 در دو نوع بوش‌زندگی (خرده لاستیک و شیشه‌های ضایعاتی از جمله مواد حاصل خشک‌کردن که حجم قابل ملاحظه‌ای از مواد زائد را به خود اختصاص می‌دهند، در این تحقیق اثر افزودنی‌های خرده لاستیک و شیشه بر روی مقاومت شیارشگذی مخلوطهای آسفالتی با استخوانبندی سنگدانهای در برابر شیار افزایگی چای جرخ می‌شوند.

ژیست 108.3. ضایعاتی استخوانبندی حاصل از تابه‌های

5 درصد آن را خرده شیشه تولید می‌شود که در 3 آلیاژن. 300.000 ضایعاتی استخوانبندی حاصل از تابه‌های
ارزیابی مقاومت شیارشدگی مخلوط‌های آسفالتی با استحکام بندی سنگ‌دانه‌ای هاوی ازودنی‌های خرده استیک و شیشه‌ای

مطالعه‌های نشان می‌دهد که استفاده از پودر استیک منجر به بهبود عملکرد آسفالت در برای شیار افتادگی می‌شود (بیلندریم، 2005). مقایسه‌های حمل و نقل ایزو آپریا عملکرد آزمایش‌گاهی مهندسی-های آسفالت حاوی خرده استیک از آزمایش‌های پیشین

در این مقاله، به بررسی تحقیقاتی انجام شده در زمینه مخلوط‌های آسفالتی نشان می‌دهد که حجم خرده استیک از این تحقیقات به بررسی اثر ماده‌ای مختلف بر عملکرد آسفالت و رژیم اختصاصی داده شده است و بررسی رفتار مخلوط‌های آسفالتی با استحکام‌های خارجی حاوی این نوع افزودنی کمتر مورد توجه واقع شده است. در این راستا، بررسی مقایسه اثر خرده استیک و شیشه‌ای روی خرده استیک با استحکام‌های سنگ‌دانه‌ای در دو زیست (شیارافافذگی جای چرخ و شیارافافذگی جای چرخ) پرداخته شده است.

2. موارد و روش‌ها

در این تحقیق، مصالح سنگی مورد استفاده برای ساخت نمونه‌های آسفالتی از معدن بیل واقع در استان SMA

2 - Stone mastic asphalt
3 - Gap graded

NCHRP 1- Dynamic complex modulus
جلوه‌گیری از قیزباق و جادوارش در سیستم‌های حمل و نقل مطرح است. در این تحقیق با استفاده از مدل‌های مختلفی از جمله مدل‌های آزمایشگاهی، تحقیق و با بررسی مشخصات ه茴ک، پیشنهاداتی برای بهبود کیفیت کاربردی این سیستم‌ها ارائه شد.

جدول 1. مشخصات مصالح سگنی استفاده شده در تحقیق

<table>
<thead>
<tr>
<th>روش آزمایش</th>
<th>مقدار مورد استفاده در این تحقیق</th>
<th>شرح</th>
</tr>
</thead>
<tbody>
<tr>
<td>ساین</td>
<td>ASTM C131</td>
<td>مصالح درشت دانه</td>
</tr>
<tr>
<td>افت و زنگ یاده سیالات مدل</td>
<td>ASTM C88</td>
<td></td>
</tr>
<tr>
<td>درصد شکستگی</td>
<td>ASTM D 5821</td>
<td></td>
</tr>
<tr>
<td>درصد سگنایشی</td>
<td>ASTM D4791</td>
<td></td>
</tr>
<tr>
<td>وزن مخصوص حقيقة مصالح ماده روی اک نمره 8 (g/cm^3)</td>
<td>ASTM C127</td>
<td></td>
</tr>
<tr>
<td>درصد جذب آب مصالح ماده روی اک نمره 8</td>
<td>ASTM C127</td>
<td></td>
</tr>
</tbody>
</table>

| مصالح ویژه‌نامه |
|---|---|
| NP | ASTM D4318 |
| درصد حفره | ASTM C88 |
| درصد افزایش مناسب | ASTM D 2419 |
| وزن مخصوص حقيقة مصالح ماده روی اک نمره 8 (gr/cm^3) | ASTM C128 |
| درصد جذب آب مصالح ماده روی اک نمره 8 | ASTM C128 |
| وزن مخصوص حقيقة مصالح رده شده از اک نمره 8 (gr/cm^3) | ASTM C188 |}

کرمان تهیه شدند. مشخصات مصالح سگنی در جدول 1 آمده است. نیز مورد استفاده بیش از نوع خالص ۶۰۰ و از پالایشگاه اصلی تهیه شد. جدول ۱ مشخصات فیزیکی مصالح سگنی تهیه شده نشان می‌دهد. دانشگاه استاد که این مطالعه را انجام داده است بدون اجازه تولید کننده مصالح. ولی در نهایت مصالح سگنی تهیه شده و زون فیزیکی آزمایشگاهی مصالح سگنی آزمایشگاهی مصالح سگنی استخوان‌نگاری است.

دانشگاه علوم پزشکی ایران (۱۳۹۴) انتخاب شده است.

پیشنهاداتی برای بهبود کیفیت کاربردی این سیستم‌ها ارائه شد.

منصوریان و مولایی
ارزیابی مقاومت شیرانی مخلوط‌های آسفالتی با استخوان بندی سنتگ‌دانهای حاوی افزودنی‌های خرده لاستیک و شیشه

جدول ۲ مشخصات قیر مورد استفاده در تحقیق

| نوع آزمایش | روش آزمایش | فیل خالص | وزن مخصوص | نقطه نرم (درجه سلسیوس) | نقطه نفوذ در 25 درجه سلسیوس (دهم میلی‌متر) | نقطه اشتعال (درجه سلسیوس) | کشش قیر در 25 درجه سلسیوس | مولفه نامحلول قیر | ویسکوزیتئه در 120 درجه سلسیوس | ویسکوزیتئه در 135 درجه سلسیوس | ویسکوزیتئه در 160 درجه سلسیوس | (bracht درجه نفوذ در 25 درجه سلسیوس) | (bracht درجه نفوذ و ویسکوزیته کیفیتی) | (bracht حسب تعدادی و ویسکوزیته کیفیتی) |
|------------|-------------|----------|-------------|------------------|---------------------------------|------------------|---------------------------|----------------|------------------|------------------|----------------|------------------|------------------|
| ASTM D3289 | 0/17 | 105 | 6 | 296 | 100 | 99/8 | 592 | 1210 | 371 | 144 | 4788 | 976 |
| ASTM D36 | | | | | | | | | | | | |
| ASTM D5 | | | | | | | | | | | | |
| ASTM D92 | | | | | | | | | | | | |
| ASTM D113 | | | | | | | | | | | | |

شکل ۱: منحنی دانه‌بندی مصالح سنگی در مخلوط آسفالتی

مشخصات خرده‌های استیک مورد استفاده در تحقیق

<table>
<thead>
<tr>
<th>وزن واحد حجم</th>
<th>پلاستیک</th>
<th>تراکتیور</th>
<th>پلیمر</th>
<th>میزان رد شده از الک</th>
<th>دوهم</th>
<th>خاکستر</th>
<th>درصد</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>(gr/cm³)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>1/16</td>
<td>5</td>
<td>10</td>
<td>29</td>
<td>50</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

با توجه به منحنی‌های حاصل از آزمایش مارشال و با در نظر گرفتن این نکته که درصد رد شده در این گام به‌دنبال تست شیشه طبق استاندارد ASTM D1559 شدید با توجه به منحنی‌های حاصل از آزمایش مارشال و با در نظر گرفتن این نکته که درصد رد شده در این گام به‌دنبال تست شیشه طبق استاندارد AASHTO T305 به‌دنبال تست شیشه طبق استاندارد ASTM D1559 و بر اساس لحاظ‌های آفصالتی استفاده شد. برای این منظور، نمونه‌ها با ۵۰ پرده چکش مارشال که به هر طرف نمونه وارد شد مترکم شدند.

برای تعیین درصد قیر بهینه مخلوط‌های آسفالتی استفاده شد. برای این منظور، نمونه‌ها با ۵۰ پرده چکش مارشال که به هر طرف نمونه وارد شد مترکم شدند.

مهندسی زیر ساخت‌های حمل و نقل، سال اول، شماره دوم، تابستان ۱۳۹۴

۸۰
بعد اتمام شکل ۲ نمونه‌ای از نمونه‌های آزمایش مارشال را برای فاز افروزندی پوشر لاستیک نشان می‌دهد.

c\(=\frac{\Delta h}{h_0}\) (۱)

haar پوشر شیوه پوشر لاستیک و نمونه‌های شاهد به ترتیب ۷/۵ و ۷/۶ درصد وزنی مخلوط آسفالتی.

شکل ۲ نتایج آزمایش مارشال برای یک نمونه از مخلوط آسفالتی با استخوان‌های سنگدانی حاوی پوشر لاستیک

در این تحقیق برای تعیین مقادیر مخلوط‌های آسفالتی در پوشر تغییر شکل دائمی آزمایش خشش SMA در پوشر تغییر شکل دائمی از آزمایش خشش BS DD226 استفاده شد. قبل از اعمال پارک کارخانه اصلی یک نشش پیش‌پارک‌کاری به میزان ۲۰ کیلوپاسکال به مدت ۱۲۰ ثانیه بر نمونه‌های آسفالتی اعمال گردید. دمای انجام آزمایش

مهدی‌سیر ساخته‌ای حمل و نقل، سال اول، شماره دوم، تابستان ۱۳۹۴

۸۱
ارزیابی مقاومت شیارشدگی مخلوط‌های آسفالتی با استخوان بندی سنگ، دانه‌ای حاوی افزودنی‌های خرده لاستیک و شیشه

که در آن $e_u(n,T)$ کرنش محوری نمونه پس از n بار اعمال بار در دامنه T تغییر فاصله بین دو صف‌های بارگذاری h_0 و h فاصله اولیه بین دو صف‌های بارگذاری h_0 است.

شکل 3: دستگاه UTM14P و قالب مورد استفاده برای آزمایش خشش دینامیک

نمودار تغییر کرنش تجمیعی (تغییر شکل تجمیعی) بر حسب دفعات بارگذاری نمونه‌های مورد آزمایش نشان می‌دهد. هر دفعه نمونه در سه فاز مختلف تغییر شکل می‌دهد. در فاز اول، نرخ تغییر شکل‌های نمونه در هر سیکل روند کاهشی به خود می‌گیرد تا نهایی که مقادیر این تغییر شکل‌ها در هر سیکل یکسان گردد. در نتیجه، شیب نمودار تغییر شکل - تعادل سیکل بارگذاری به صورت خطی درآید. در این وضعیت، نمونه وارد مرحله دوم با مرحله خصی بارگذاری خود شده است. مرحله دوم نا‌زمانی که نمونه تاب خششی تحمیل بار دینامیک وارد را داشته باشد ادامه می‌یابد. هنگامی که نسبت به نرخ تغییر شکل نمونه، شیب نمودار تغییر شکل - تعادل سیکل بارگذاری از حالت خششی در آمد و روند افزایشی به خود گیرید به عبارتی کرنش‌ها در هر سیکل نسبت به سیکل‌های ماقبل افزایش یافته، در واقع نمونه توان خود را از دست داده و اواخر جفت سیکل تغییر شکل خود شده است این مرحله تا نهایی (۱۰۰/۱) نمونه آدامه می‌یابد. نقطه‌ای که نمونه از مرحله دوم وارد مرحله سوم

1- Flow number
2- Simple stepwise method
شاخص ریزش علامت‌های SMA حاوی ۲۵٪ خرده لاستیک

شکل ۴ تغییرات تاریکی دانمایی بر حسب تعداد شکل‌بندی پارک پارکاری در آزمایش خزش دینامیک برای یکی از نمونه‌های آسفالتی

شکل ۵ تغییرات نرخ کرنک دانمایی در آزمایش خزش دینامیک برای یکی از نمونه‌های SMA حاوی ۲۵٪ خرده لاستیک

شکل ۶ و ۷ پریل تغییرات کرنک دانمایی نمونه‌ها SMA آسفالتی حاوی خرده لاستیک و خرده شیشه‌ای

نتیجه و بحث

که از آزمایش خزش دینامیک به‌دست آمده در این شکلها، نمونه‌های SMA بفناونده ریزش تصویری، نمونه‌های G افزودنی خرده و شیشه SMA بفناونده نمونه‌های R نشان‌دهنده نمونه‌های های آسفالتی حاوی خرده لاستیک و خرده شیشه SMA
ارزیابی مقاومت شیارشبدگی مخلوط‌های آسفالتی با استخوان بندی سگدانه‌ای حاوی افزودنی‌های خرده لاستیک و شیشه

قبل از این تحقیق، در روش افزایش تدریجی ساده استفاده شده است. شکل 8 عدد روانی مخلوط‌های آسفالتی حاوی مواد افزودنی مختلف را نشان می‌دهد. در این شکل B یا B روش‌هایی است که بدون افزودنی است. استفاده از این تحقیق در این زمینه استفاده شده که بر اساس توضیحات قسمت

![شکل 6. تغییرات کرنش دامی نمونه‌های آسفالتی حاوی خرده لاستیک SMA](image)

![شکل 7. تغییرات کرنش دامی نمونه‌های آسفالتی حاوی خرده شیشه SMA](image)

همانطور که در شکل 8 مشاهده می‌شود، به‌طور کلی میزان گفتگوی افزودنی‌های پودر شیشه و پودر لاستیک باعث افزایش عدد روانی و به عبارات دیگر موجب افزایش مقاومت مخلوط‌های SMA در برابر پدیده شیشه است. در این تحقیق به نظر می‌رسد افزودنی خرده

مهندسی زیر ساخت‌های حمل و نقل، سال اول، شماره دوم، تابستان 1394

84
پرداختن. از آنجا که عدد رواني میزان برای مقاومت مخلوطهای آسفالتی در برابر شیار شدگی است، نشان می‌دهد می‌توان کنترل افزایش مقاومت مخلوطهای آسفالتی در برابر شیار شدگی SMA مخلوطهای آسفالتی نشان می‌دهد که این مواد باعث افزایش عدد رواني مخلوطهای SMA می‌شود.

5. نتایج گیری
بررسی‌های انجام شده در این تحقیق روی مخلوطهای آسفالتی با استخوان‌بندی سگدانهای (SMA) حاوی مواد افزودنی خرده است. نتایج (عبوری از الک نمره 200 و خرده شیشه (عبوری از الک نمره 200) نشان می‌دهد که این مواد باعث افزایش عدد رواني مخلوطهای SMA می‌شود.

6. مراجع
سازمان مدیریت و برنامه‌ریزی کشور. 1379. ظرایفی و ارزیابی امکان‌پذیری مخلوطهای آسفالتی با استخوان‌بندی سکد‌هایی. وزارت راه و ترابری، نشر شماره 2006.

معاونت برنامه‌ریزی و نظارت راه‌بردی رئیس جمهور. 1370. "بهای نامه روسی آسفالت راه‌های ایران". پژوهشکده حمل و نقل، نشر شماره 224.
ارزیابی مقاومت شیارشدگی مخلوط‌های آسفالتی با استخوان بندی سنگ‌دانهای حاوی افزودنی‌های خرده‌افزودهای لاستیک و شیشه

